

TEMOCILLIN SUSCEPTIBILITY TESTING WITH 6 DIFFERENT METHODS ON ENTEROBACTER AEROGENES

* on behalf of the Bilulu Study Group

ABSTRACT

Background: Temocillin is a ticarcillin derivate with increased β-lactamase stability, active against Enterobacteriaceae. We compared the performance of 5 different methods for temocillin susceptibility testing on F. aerogenes strains with the broth microdilution (BM) method

Methods: On 151 consecutive isolates of E. aerogenes collected in 5 Belgian Hospitals, temocillin susceptibility testing with 6 different methods was performed: BM as reference method, disk diffusion with paper disks (Oxoid)(DP), disk diffusion with Rosco tabs (Neo-Sensitabs ®)(DR). E-test ® strips (AB Biodisk)(ET), Phoenix (BD)(PH) and Vitek 2 (bioMérieux)(VI) Results were categorized as susceptible (S) intermediate (I) or resistant (R) Discrepancies in SIRcategory were categorized as minor (1 step difference), major (BM S, experimental method R) and very major error (BM R experimental method S) Association was further analyzed by means of odds ratios. Agreement was analyzed by the κ-statistic. The Pearson correlation was calculated between the experimental methods and BM for MIC-results. Results: Minor, major and very major errors were seen in respectively 11, 6 and 1% of results with DP, in 5, 0 and 5% with DR, in 0, 7 and 4% with ET, in 0, 49 and 0% with PH and in 0, 7 and 5% with VI. All methods were significantly associated with BM, however odds ratios were only slightly above 1, indicating a weak association. Agreement was found to be rather low. The 3 methods with MIC results were significantly correlated by Pearson correlation; but the correlations were not very high. E-test was the strongest correlated with BM.

Conclusions: Major discrepancies with BM were seen for all experimental methods. Agreement and association were fairly low. For MIC determination E-test looks the most reliable of the tested methods

INTRODUCTION

Temocillin is a semisynthetic 6-a-methoxy derivate of ticarcillin active on Enterobacteriaceae and stable against βlactamases, including AmpC and some extended spectrum β-lactamases (ESBL). Despite this interesting feature, the lack of in vitro and in vivo studies hampers the breakthrough of this antibiotic in clinical use. Temocillin is available in Belgium as Negaban ® (licensed to Eumedica). It is being re-launched in the UK (1) and was approved recently in the USA for treatment of R cenacia lung infection in cystic fibrosis (2)

During the year of 2005, several new commercial systems (ET and new panels on PH and VI) became available for routine susceptibility testing for temocillin. Before setting up more and larger in vivo studies, it seemed mandatory that first

these new potentially promising techniques were validated in relation to the reference method (BM).

In this study we compared the performance of 5 different methods for temocillin susceptibility testing on E. aerogenes with the broth microdilution (BM) method on 151 consecutive E. aerogenes strains, collected in the first 3 months of 2005 in 5

Belgian Hospitals.

METHODS (1) Bacterial strains: origin and identification.

Decemia scalars, organi and teaminectoria.
In the first 3 months of 2005, 160 consecutive non duplicate isolates of *E. aerogenes* were collected in 5 Belgian hospitals (Onze-Lieve Vrouw Hospital, Aalst, Imelda Hospital, Bonheiden, Hospital Oost-Limburg, Genk, Sint-Lucas Hospital, Genet, Virga Jesse Hospital, Hasselt) om clinical samples of hospitalized and ambulant patients.

After primary bacterial identification by routine procedures of each laboratory, strains were frozen at \leq -70°C till further analysis. Identification of the strains was confirmed by Phoenix (Becton-Dickinson, Sparks, MD, USA) using the Combo panel (NMIC/ID-51), and by Vitak 2 (biolAfelieux, Marcy 1 Etole, France) using the Vitek 2 colorimetric GN Card. In case of any discrepancy, strains were identified by API 202 (biolAfelieux, Marcy 1 Etole, France) and by sequencing of a 570 base pair long amplication of the gene coding for the small subunt of 16S ribosomal RNA and a blast search of the obtained sequences at the site of the National Centre for Biotechnology Information acbi.nih.gov/BLAST).Nine strains were excluded because of false identification or contamination

Antibiotic susceptibility testing.

Broth microdilution method All strains were tested using the CLSI reference broth microdiution method ⁽³⁾. Inocula prepared in Mueller Hinton broth (Becton Dickinson, Sparks, MD, USA) to achieve 5 - 105 CFU/ml as final concentration, were incubated 18 to 24 h at 37°C with a range of 1 to 512 mg/L of

East The minimal inhibitory concentrations (MICs) for temociliin were measured on Muetler-Hinton agar (Oxold, Wesel, Germany) with E-test (AB Biodisk, Solna, Sweden) according to the manufacturers' instructions.

Susceptibility testing by dak offlusion was performed according LSI performance standards with 30 µg tencollin paper disks (0xxid, Basingstoke, UK) on Mueller Hinton II agar (bioMérieux, Marcy-Elaöle, France) and 30 µg tencollin Neo-Sensitabs @ (Rosco Diagnostica AS, Taastup, Demmark) on Mueller Hinton (Dxxid, URes), Gemary, NATer 15-16 hours of incubation in ambient air at 35°C, plates were read visually and by Osiris camera (Bio-Rad, France).

Jusceptibility testing on the Phoenix system was performed with the Phoenix Combo panel (NMIC/ID-51) (Becton-Dickinson, Sparks, MD, USA) according to the manufacturers' instructions

Vitek 2 On the Vitek 2 system, the AST-N045 card (bioMérieux, Marcy-l'Etoile, France) was used for susceptibility testing according to the recommendations of the manufacturer

Interpretation of the results

MIC results were categorized according to the breakpoints published by Fuchs and colleagues: susceptible: < 16 mg/L, resistant: > 32 mg/L. Results of temocilin paper disks were interpreted according to the breakpoints published by Fuchs and colleagues. Subsequences - 16 mg/c, resistant. < 32 mm (4), Results of temocilin has published by Fuchs in the same article: susceptible > 15 intermediate: 16 – 18 mm; resistant: < 15 mm (4). Results of temocilin has oscilable so were interpreted according to the breakpoints of temocilin has observed according to the breakpoints and the same article: susceptible > 15 mm (4). Results of temocilin has oscilable so were interpreted according to the breakpoints. provided by the manufacturer; susceptible; > 18 mm; intermediate; 15 - 17 mm; resistant; < 14 mm (

For the Phoenix and Vitek 2 systems, the "raw" MIC values were used, not taking in account any suggested adapted interpretations by the expert systems.

METHODS (2)

Quality control Quality control strains (Escherichia coli ATCC 25922 and 35218) were included in each run for each method or E-test the quality control acceptation limits of the package insert supplement were used: 4 - 16 mg/L for E. coli ATCC 25922 and 2 - 8 mg/L for

or the interpretation of the quality control results of temocillin disk diffusion, we used the recommendations of the manufacturers: for temocillin paper disks, 20 – 24 mm (E. coli ATCC 25922) and 24 – 26 mm (E. coli ATCC 35218) ⁽⁶⁾; for temocillin NeosensitabsTM, 18 – 24 mm (E. coli ATCC 5922) and 20 - 26 mm (E. coli ATCC 35218) (7

Statistics Statistical analysis was supervised by the Center for Statistics, University of Hasselt, Agoralaan 1, D-building, B-3590 Diepenbeek, Belgium, annouschka.laenen@uhasselt.be.

In our study the checklist with STARD criteria was used wherever applicable (8).

RESULTS

In the study 160 observations were made, of which 9 were problematic and therefore deleted, so that the analysis is based on 151 observations The scheme in Table 1 was used to categorize the measurements (9). For the Phoenix technique, a result '>16' was considered as Resistant Table 2 summarizes the frequency distribution of the six measurements over the three susceptibility categories.

Table 1	Resistant	Intermediate	Susceptible	Table	2	2 Resistant	2 Resistant Intermediate
Rosco discs	≤ 14	15 - 17	≥ 18	Rosco	discs	discs 1	discs 1 8
paper discs	s 15	16 - 18	≥ 19	paper	discs	discs 14	discs 14 16
Phoenix				Phoe	nix	nix 85	nix 85 0
Vitek	> 12		< 16	Vitek	_	13	13 0
E-test				E-test		16	16 0
microdilution				microdilution		11	11 0

A difference of one step between the experimental method and the reference method (all combinations S-I and R-I) is considered as a 'minor discrepancy'. When the reference method says S and the experimental method says R, we call it a 'major discrepancy'. Whenever the reference nethod gives R and the experimental method gives S, it is called a 'very major discrepancy'. According to this terminology the discrepancies betwee the five experimental methods and the reference method are given in Table 3.

Table 3	Minor	Major	Very major
Rosco discs	8 (5 %)	0 (0 %)	8 (5 %)
paper discs	16 (11 %)	9 (6 %)	2(1%)
Phoenix	0 (0 %)	74 (49 %)	0 (0 %)
Vitek	0 (0 %)	10 (7 %)	8 (5 %)
E-test	0 (0 %)	11 (7 %)	6 (4%)

DISCUSSION (1)

Agreement (10,11)

Table 4 gives the weighted kappa-statistic indicating the agreement between the respective technique and the reference method based on microdilution. Besides the kappa-statistic, also the ASE (an indicator of variance) and the 95% confidence interval (CI) for the kanna-statistic are given

Table 5 gives a guideline to interpret the value of a kappa-statistic (12). According to these guidelines, the agreement is poor between the techniques Phoenix and Vitek on one hand and the microdilution method on the other hand. All other techniques have a 'fair' agreement with the reference method, even though for the Rosco discs this can be considered as borderline. The paper discs

have the highest agreement with the reference method and also the confidence interval is better (narrower) then the one for the E-

est.					
Table 4	Карра	ASE	95% CI	Kappa	Table 5
Rosco discs	0.214	0.120	-0.021; 0.449	< 0.2	Table 5
paper discs	0.362	0.096	0.174; 0.551	> 0.2 ≤ 0.4	
Phoenix	0.115	0.034	0.048; 0.182	> 0.4 ≤ 0.6	
Vitek	0.186	0.123	-0.055; 0.427	> 0.6 ≤ 0.8	
E-test	0.311	0.125	0.066; 0.556	> 0.8 ≤ 1	

Association

Correlation

The experimental methods Phoenix. Vitek and E-test, and the reference method are strictly speaking not measured continuously but the outcomes consist of several (minimum 4) ordered categories that can be converted according to Table 6. In practice,

ordered categories with four or more levels are regularly analyzed as continuous variables

Phoenix	Vitek	E-test	Reference	converted to
2			2	2
4	<=4	4	4	4
8	8	8	8	8
16	16	16	16	16
>16	>=32	32	32	32
		48	64	48
		64		64
Table 6		96		96

DISCUSSION (2)

We use the converted values to calculate the Pearson-product moment correlation between the experimental methods and the reference method. Table 7 gives the results. (The p-value indicates the probability that, purely by chance, two independent/uncorrelated variables will take the precise combination of values that was observed. Whenever this chance is smaller than 5% or 0.05, we consider the correlation as significant.) The three methods are significantly correlated with the reference method at the 5% level. E-test has the strongest correlation with the reference method. However correlations are generally rather low

Experimental method		Pearson correlation	p- value
	Phoenix	0.394	0.001
	Vitek	0.240	0.0305
Table 7	E-test	0.502	< 0.0001

Association between categorical variables

We fitted the proportional odds model separately for each of the techniques. The categorical outcomes (R, I, S) of the experimental techniques are taken as the response variable and the raw (uncategorized) measurement outcomes of the microdilution method are taken as the explanatory variable. The distribution of the raw measurements for the microdilution method are as in Table 8.

observed value	7-11-0	Frequency	Table 9	Odds ratio	95% CI
2		10	Rosco discs	1.084	1.026; 1.045
4		24	paper discs	1.182	1.114; 1.255
8		61	Phoenix	1.201	1.112; 1.296
16		45	Vitek	1.121	1.053; 1.194
32		10	E-test	1.146	1.076; 1.221
64		1			

We summarize the results for the five models by giving the odds ratios and the confidence intervals for the odds ratios (Table 9). An odds ratio of 1 indicates that the two variables are independent. The further away the value is from 1, in either direction, the stronger is the association between the two variables. We conclude that two variables are independent (not related) when the confidence interval contains the value 1

All odds ratios are slightly above 1 and none of the confidence intervals contains 1. This means that we can conclude that all of the experimental techniques are significantly associated with the reference technique. In contrast to the results on agreement, the results of the Phoenix technique are the strongest related to the reference method. However the association for the paper discs method is not much lower and the confidence interval is better (narrower). In general the odds ratios are all rather similar, and generally low (not much above 1)

CONCLUSIONS

- Major discrepancies with BM were seen for all experimental methods.
- Agreement and association were fairly low
- For MIC determination E-test looks the most reliable of the tested methods

REFERENCES

Strength of agreemen

Poor

Fair

Moderate

Good

Very good

- Livermore D.M., Hope R. , Fagan E.J., Warner M., Woodford N., Potz N. 2006. Activity of temocillin against prevalent ESBL- and AmpC-producing Enteropacteriaceae from south-east England, J. Antimicrob, Chemother, 57: 1012-1014
- Rodriguez-Villalohos H. Malaviolle V. Frankard I. de Mendonca R. Nonhoff C. Struelens M. I. 2006. In vitro activity of temocillin against extended spectrum &-lactamase-producing Escherichia coli. J. Antimicrob. Chemother, 57: 771-774. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; fifteenth informational
- supplement, 2005, M100-S15, Vol. 25 No. 1
- Fuchs P.C., Barry A.L., Thomsberry C., Jones R.N. 1985. Interpretive criteria for Temocillin disk diffusion susceptibility testing. Eur. J. Clin. Microbiol. 4:30-33. Rosco Diagnostica. Neo-sensitabs ™ Users's Guide Susceptibility Testing, Zone diameter interpretation table 10.1, 18th Ed.
- 2005/2006, October 2005. Paeme G. 1998, BAC Flash, Newsletter Smith Kline Beecham Pharma, July 20th
- Rosco Diagnostica. Neo-sensitabs ™ Users's Guide Susceptibility Testing, Quality Control Procedures p. 82, 18th Ed. 2005/2006, October 2005 Bossiul PM Reitsma I.B. Bruns D.F. Gatsonis C.A. Glasziou P.P. Invio I.M. Liimer I.G. Moher D. Rennie D. de Vet H.C.
- Dossoy F. M., Retistina J.D., Bruins D.E., Galschie C.A., Glaszlou F.F., Inwig L.M., Eighter J.G., Woher D., Retnine D., de Vern-C. 2003. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Standards for Reporting of Diagnostic Accuracy. Clin. Chem. Jan;49(1): 1-6.
- Agresti A. 1996, An introduction to categorical data analysis, Wiley & Sons: New York,
- Cohen J. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-46.
 Cohen J. 1968. Weighted kappa: Nominal scale agreement with provision for scaled disagreement or partial credit. Psychological Bulletin, 70, 213-220
- 2. Landis, J.R., Koch G.G. 1977. The measurement of observer agreement for categorical data. Biometrics. 33, 159-174